Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.400
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(5): 409, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564102

RESUMO

The amount of information available on the microplastic (MP) contamination in Goa's riverine water systems is currently limited. The abundance, size, colour, and polymer composition of microplastics in Chapora River surface water were investigated in this study. MPs in Chapora River surface water ranged from 0.1 particles/L (station 13) to 0.47 particles/L (station 5). The mean (± standard deviation) MP concentration was 0.25 (± 0.13) particles/L. Fibre was the dominant shape (77.15%), followed by fragments (12.36%), films (9.36%), and foam (1.12%). Most MPs were found in the 0.1-0.3 mm size range, then in the 0.3-1 mm and 1-5 mm. The dominant type of polymer studied was polyethylene terephthalate (PET; 46%), followed by high-density polyethylene (HDPE; 14%), polypropylene (PP; 5%), and polystyrene (PS; 1%). The risk assessment study indicated high risk with respect to PHI, while PLI shows low risk in the area. The source of MPs was mostly anthropogenic in nature in the region. When compared with other tropical rivers, MP pollution was relatively lower in the Chapora River. Nevertheless, the baseline data will help the local administration take mitigation measures to reduce the impact of MP pollution in the region.


Assuntos
Microplásticos , Rios , Plásticos , Monitoramento Ambiental , Medição de Risco , Índia , Polietileno , Polímeros , Água
2.
Environ Monit Assess ; 196(5): 420, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570413

RESUMO

Monitoring and protecting freshwater habitats are paramount for a sustainable water management perspective. This study investigated potentially toxic elements (PTEs) in the potamic water of the Anday Stream Basin (Türkiye), Black Sea Region, for a hydrological year (from May 2020 to April 2021). Among PTEs, the highest average values were recorded for sodium (Na) at 41.3 mg/L and the lowest for mercury (Hg) at 0.009 µg/L and noted under quality guidelines. The stream was found to be at the level of "Low Heavy Metal Pollution" and "Low Contamination" based on the ecotoxicological risk indices. The highest calculated hazard quotient (HQ) value of 1.21E-02 for Cd was noted in the children via the dermal pathway and the lowest of 6.91E-06 for Fe in adults via the ingestion pathway. Results revealed a higher hazard index (HI) value of 1.50E-02 for Cd to children and the lowest of 1.98E-05 for Fe to adults. As a result of applying agricultural risk indices, the stream showed sodium adsorption ratio values less than 6 and was found to be "Excellent" for agriculture. However, the sodium percentage values were less than 20 and found "Permissible" and the magnesium hazard > 50 and noted as "Unsuitable" for agriculture. Statistical analysis revealed that natural factors mainly attributed to PTE contamination of the Anday Stream Basin.


Assuntos
Mercúrio , Metais Pesados , Criança , Adulto , Humanos , Monitoramento Ambiental/métodos , Água/análise , Rios , Mar Negro , Turquia , Metais Pesados/análise , Mercúrio/análise , Medição de Risco , Sódio/análise , Cádmio/análise
3.
PLoS One ; 19(4): e0299119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598486

RESUMO

The Yangtze River Delta (YRD) bears the vital task of driving the growth of China's equipment manufacturing industry (EMI) intelligence as an advanced region. Fostering the transformation and upgrading of the EMI in the YRD and constructing a modern production mode is vital to developing and reforming China's manufacturing industry. This paper uses industrial robot data to assess the level of intelligence (LoI) in the EMI from 2016 to 2019. The OLS (ordinary least squares) model is used for the measurements, and the MQ (the modified contribution index) is used to estimate the degree of contribution from a host of variables. It is identified that the LoI is on the rise. However, excluding railways, aerospace, shipbuilding, and other transportation equipment manufacturing, the LoI is significantly higher than in other subsectors. It is also identified that technological innovation ability, human capital density, and enterprise cost pressure govern the industry's LoI. Moreover, while there is a difference in the main influencing factors in LoI within different industries, R&D investment, technological innovation ability, and enterprise cost pressure have the most significant impact across most equipment manufacturing sub-industries.


Assuntos
Indústria Manufatureira , Rios , Humanos , Indústrias , Invenções , Comércio , Desenvolvimento Econômico , China
4.
PLoS One ; 19(4): e0300788, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598504

RESUMO

The attainment of regional high-quality development necessitates the critical role of the digital economy in facilitating the transformation of industrial structures. This study intends to investigate the effect of the digital economy on industrial structure transformation from the perspective of innovation factor allocation using a panel dataset of 41 cities in the Yangtze River Delta region for the period from 2011 to 2020. This paper considers four dimensions to measure the level of industrial structure transformation i.e. industrial structure servitization, industrial structure upgradation, service industry structure upgradation and industrial interaction level. The results of the study suggest that the digital economy can significantly improve industrial structure transformation. The results remain consistent even after several robustness checks. Further, the analysis of the mechanism of action shows that the digital economy can promote industrial structure transformation by optimizing the innovation factor allocation. The study provides several policy implications for the digital economy and its role in the promotion of industrial structure transformation.


Assuntos
Indústrias , Políticas , Cidades , China , Rios , Desenvolvimento Econômico
5.
J Environ Manage ; 357: 120780, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38569267

RESUMO

Water availability in the subhumid region is highly vulnerable to frequent droughts. Water scarcity in this region has become a limiting factor for ecosystem health, human livelihood, and regional economic development. A notable pattern of land cover change in the subhumid region of the United States is the increasing forest area due to afforestation/reforestation and woody plant encroachment (WPE). Given the distinct hydrological processes and runoff generation between forests and grasslands, it is important to evaluate the impacts of forest expansion on water resources, especially under future climate conditions. In this study, we focused on a typical subhumid watershed in the United States - the Little River Watershed (LRW). Utilizing SWAT + simulations, we projected streamflow dynamics at the end of the 21st century in two climate scenarios (RCP45 and RCP85) and eleven forest expansion scenarios. In comparison to the period of 2000-2019, future climate change during 2080-2099 will increase streamflow in the Little River by 5.1% in the RCP45 but reduce streamflow significantly by 30.1% in the RCP85. Additionally, our simulations revealed a linear decline in streamflow with increasing forest coverage. If all grasslands in LRW were converted into forests, it would lead to an additional 41% reduction in streamflow. Of significant concern is Lake Thunderbird, the primary reservoir supplying drinking water to the Oklahoma City metropolitan area. Our simulation showed that if all grasslands were replaced by forests, Lake Thunderbird during 2080-2099 would experience an average of 8.6 years in the RCP45 and 9.4 years in the RCP85 with water inflow amount lower than that during the extreme drought event in 2011/2012. These findings hold crucial implications for the formulation of policies related to afforestation/reforestation and WPE management in subhumid regions, which is essential to ensuring the sustainability of water resources.


Assuntos
Ecossistema , Florestas , Humanos , Recursos Hídricos , Água , Abastecimento de Água , Plantas , Mudança Climática , Rios
6.
J Environ Manage ; 357: 120645, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38579463

RESUMO

Excessive nutrient supply in agricultural regions has led to various environmental issues, thereby requiring concentrated management owing to its persistent upward trend. Nutrient budgets (NBs), a vital agricultural environmental indicator, are employed for nutrient management in agricultural areas, using data surveyed by administrative agencies. However, the spatial extent of nutrient data for nutrient budgeting is limited by administrative boundaries according to the surveying organization, posing challenges in interpreting spatial patterns at the watershed level. In this study, a novel approach was developed to identify priority nutrient management areas by applying hot spot spatial analysis to watershed-level NBs, considering hydrological characteristics. This method was applied to approximately 850 subwatersheds across the Republic of Korea, where land cover characteristics are complex. Reassessing nutrient budgets at the watershed scale, accounting for overlapping administrative boundary areas and crop cultivation ratios, indicated similar levels between the two methods. Hot spot analysis revealed that watersheds with elevated NBs mirrored the spatial patterns of livestock excreta and cropland. The spatial distribution characteristics of watersheds with high nutrient levels in rivers corresponded with the concentration characteristics of industrial and commercial areas. Therefore, applying watershed-level NBs based on land cover ratios that consider nutrient input characteristics in agricultural regions is deemed appropriate for selecting priority nutrient management areas. Collectively, this study presents a method for selecting nutrient management priority areas by simultaneously considering the spatial characteristics of various environmental factors, such as land cover, livestock excreta, river water quality, and land area-based watershed-specific NBs. The proposed approach, considering mixed land cover characteristics, is anticipated to be valuable for selecting priority management areas in watersheds with diverse pollution sources. Future research is needed to explore nutrient budgets within watersheds, the influence of land use on pollution sources, and their correlation with water quality.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Monitoramento Ambiental/métodos , Agricultura , Rios , Nutrientes
7.
Environ Sci Technol ; 58(15): 6605-6615, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38566483

RESUMO

Microbial nitrogen metabolism is a complicated and key process in mediating environmental pollution and greenhouse gas emissions in rivers. However, the interactive drivers of microbial nitrogen metabolism in rivers have not been identified. Here, we analyze the microbial nitrogen metabolism patterns in 105 rivers in China driven by 26 environmental and socioeconomic factors using an interpretable causal machine learning (ICML) framework. ICML better recognizes the complex relationships between factors and microbial nitrogen metabolism than traditional linear regression models. Furthermore, tipping points and concentration windows were proposed to precisely regulate microbial nitrogen metabolism. For example, concentrations of dissolved organic carbon (DOC) below tipping points of 6.2 and 4.2 mg/L easily reduce bacterial denitrification and nitrification, respectively. The concentration windows for NO3--N (15.9-18.0 mg/L) and DOC (9.1-10.8 mg/L) enabled the highest abundance of denitrifying bacteria on a national scale. The integration of ICML models and field data clarifies the important drivers of microbial nitrogen metabolism, supporting the precise regulation of nitrogen pollution and river ecological management.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/análise , Rios , Nitrificação , China , Bactérias
8.
Bull Environ Contam Toxicol ; 112(4): 53, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565770

RESUMO

The objectives of this study were to: (1) characterize the exposure of aquatic ecosystems in Southern Ontario, Canada to pesticides between 2002 and 2016 by constructing environmental exposure distributions (EEDs), including censored data; and (2) predict the probability of exceeding acute regulatory guidelines. Surface water samples were collected over a 15-year period by Environment and Climate Change Canada. The dataset contained 167 compounds, sampled across 114 sites, with a total of 2,213 samples. There were 67,920 total observations of which 55,058 were non-detects (81%), and 12,862 detects (19%). The most commonly detected compound was atrazine, with a maximum concentration of 18,600 ngL- 1 and ~ 4% chance of exceeding an acute guideline (1,000 ngL- 1) in rivers and streams. Using Southern Ontario as a case study, this study provides insight into the risk that pesticides pose to aquatic ecosystems and the utility of EEDs that include censored data for the purpose of risk assessment.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Ontário , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Rios , Probabilidade , Medição de Risco
9.
Environ Monit Assess ; 196(5): 429, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575685

RESUMO

Water, as an indispensable constituent of life, serves as the primary source of sustenance for all living things on Earth. The contamination of surface water with heavy metals poses a significant global health risk to humans, animals, and plants. Sharkiya Governorate, situated in the East Nile Delta region of Egypt, is particularly susceptible to surface water pollution due to various industrial, agricultural, and urban activities. The Bahr Mouse Stream, crucial for providing potable water and supporting irrigation activities in Sharkiya Governorate, caters to a population of approximately 7.7 million inhabitants. Unfortunately, this vital water source is exposed to many illegal encroachments that may cause pollution and deteriorate the water resource quality. In a comprehensive study conducted over two consecutive seasons (2019-2020), a total of 38 surface water samples were taken to assess the quantity of heavy metals in surface water destined for human consumption and other applications, supported by indices and statistics. The assessment utilized flame atomic absorption spectrophotometry to determine the concentration of key heavy metals including iron (Fe), manganese (Mn), cadmium (Cd), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), cobalt (Co), and chromium (Cr). The calculated mean value of the Water Quality Index (WQI) was found to be 39.1 during the winter season and 28.05 during the summer season. This value suggests that the surface water maintains good quality and is suitable for drinking purposes. Furthermore, the analysis indicated that the concentrations of heavy metals in the study area were below the recommended limits set by the World Health Organization and fell within the safe threshold prescribed by Egyptian legislation. Despite the identification of localized instances of illegal activities in certain areas, such as unauthorized discharges, the findings affirm that the Bahr Mouse stream is devoid of heavy metal pollution. This underscores the importance of continued vigilance and regulatory enforcement to preserve the integrity of these vital water resources.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Humanos , Animais , Camundongos , Egito , Rios , Monitoramento Ambiental , Metais Pesados/análise , Cádmio/análise , Qualidade da Água , Medição de Risco , Poluentes Químicos da Água/análise
10.
PLoS One ; 19(4): e0299729, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578727

RESUMO

Urban agglomerations are sophisticated territorial systems at the mature stage of city development that are concentrated areas of production and economic activity. Therefore, the study of vulnerability from the perspective of production-living-ecological space is crucial for the sustainable development of the Yellow River Basin and global urban agglomerations. The relationship between productivity, living conditions, and ecological spatial quality is fully considered in this research. By constructing a vulnerability evaluation index system based on the perspectives of production, ecology, and living space, and adopting the entropy value method, comprehensive vulnerability index model, and obstacle factor diagnostic model, the study comprehensively assesses the vulnerability of the urban agglomerations along the Yellow River from 2001 to 2020. The results reveal that the spatial differentiation characteristics of urban agglomeration vulnerability are significant. A clear three-level gradient distribution of high, medium, and low degrees is seen in the overall vulnerability; these correspond to the lower, middle, and upper reaches of the Yellow River Basin, respectively. The percentage of cities with higher and moderate levels of vulnerability did not vary from 2001 to 2020, while the percentage of cities with high levels of vulnerability did. The four dimensions of economic development, leisure and tourism, resource availability, and ecological pressure are the primary determinants of the urban agglomeration's vulnerability along the Yellow River. And the vulnerability factors of various urban agglomerations showed a significant evolutionary trend; the obstacle degree values have declined, and the importance of tourism and leisure functions has gradually increased. Based on the above conclusions, we propose several suggestions to enhance the quality of urban development along the Yellow River urban agglomeration. Including formulating a three-level development strategy, paying attention to ecological and environmental protection, developing domestic and foreign trade, and properly planning and managing the tourism industry.


Assuntos
Desenvolvimento Econômico , Rios , China , Evolução Biológica , Cidades , Análise Fatorial
11.
PLoS One ; 19(4): e0301784, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578765

RESUMO

This swift progression of urbanization has led to increasingly prominent conflicts over the use of land, particularly around its supply and demand. Researchers, both in China and internationally, have underscored the inherent interconnection between urbanization and land utilization. This relationship has gradually become more complex with the development of urbanization. With the implementation of the Yellow River Basin's strategy to preserve the environment while ensuring high-quality development, the Yellow River Basin has become a focal point of attention for numerous scholars. This study centers on the 57 county-level administrative divisions within the Gansu segment of the Yellow River Basin. We employed an extensive array of methodologies, such as GIS technology, the entropy method, data envelopment analysis, the coupling coordination degree model, and the panel vector autoregressive model. We established an index system and a measurement model to evaluate the degree of urbanization and the efficiency of land use. We also investigated the coupling coordinated dynamics between these two variables, to further explore the dynamic interplay between urbanization and land use and reveal their underlying mechanisms. The conclusions are as follows. The urbanization level and efficiency of land use in the Gansu section of the Yellow River Basin have exhibited a consistent upward trajectory, albeit at levels that are not particularly high, indicating substantial room for improvement in the future. The level of coupling coordination between urbanization and land use efficiency in the Gansu section of the Yellow River Basin has shown a generally upward trend. However, the overall coordination level remains relatively low, characterized by an imbalance, with "high coupling but low coordination". Regarding spatial distribution patterns, considerable disparities exist in the level of coordination development, which generally decreases from the eastern toward the western regions. A strong reciprocal and interactive relationship exists between the urbanization level and land use efficiency. An elevated level of economic urbanization can initially stimulate land use efficiency. Similarly, the improvement in the level of population urbanization, social urbanization, and ecological urbanization tends to exert a restraining influence on the augmentation of land use efficiency. Conversely, the enhancement of land use efficiency makes a distinct contribution to promoting the elevation of the urbanization level.


Assuntos
Rios , Urbanização , China , Análise de Dados , Entropia , Desenvolvimento Econômico , Cidades
12.
Sci Rep ; 14(1): 8366, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600294

RESUMO

Understanding heavy metals in rivers is crucial, as their presence and distribution impact water quality, ecosystem health, and human well-being. This study examined the presence and levels of nine heavy metals (Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) in 16 surface water samples along the Chao Phraya River, identifying Fe, Mn, Zn, and Cr as predominant metals. Although average concentrations in both rainy and dry seasons generally adhered to WHO guidelines, Mn exceeded these limits yet remained within Thailand's acceptable standards. Seasonal variations were observed in the Chao Phraya River, and Spearman's correlation coefficient analysis established significant associations between season and concentrations of heavy metals. The water quality index (WQI) demonstrated varied water quality statuses at each sampling point along the Chao Phraya River, indicating poor conditions during the rainy season, further deteriorating to very poor conditions in the dry season. The hazard potential index (HPI) was employed to assess heavy metal contamination, revealing that during the dry season in the estuary area, the HPI value exceeded the critical threshold index, indicating the presence of heavy metal pollution in the water and unsuitable for consumption. Using the species sensitivity distribution model, an ecological risk assessment ranked the heavy metals' HC5 values as Pb > Zn > Cr > Cu > Hg > Cd > Ni, identifying nickel as the most detrimental and lead as the least toxic. Despite Cr and Zn showing a moderate risk, and Cu and Ni posing a high risk to aquatic organisms, the main contributors to ecological risk were identified as Cu, Ni, and Zn, suggesting a significant potential ecological risk in the Chao Phraya River's surface water. The results of this study provide fundamental insights that can direct future actions in preventing and managing heavy metal pollution in the river ecosystem.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Humanos , Cádmio/análise , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Chumbo/análise , Mercúrio/análise , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , Rios , Tailândia , Poluentes Químicos da Água/análise
13.
PLoS One ; 19(4): e0294642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38630745

RESUMO

The Cikijing River is one of the rivers of the Citarik River Basin, which empties into the Citarum River and crosses Bandung Regency and Sumedang Regency, Indonesia. One of the uses of the Cikijing River is as a source of irrigation for rice fields in the Rancaekek area, but the current condition of the water quality of the Cikijing river has decreased, mainly due to the disposal of wastewater from the Rancaekek industrial area which is dominated by industry in the textile and textile products sector. This study aims to determine the potential ecological risks and water quality of the Cikijing River based on the content of heavy metals (Cr, Cu, Pb, and Zn). Sampling was carried out twice, during the dry and rainy seasons at ten different locations. The selection of locations took into account the ease of sampling and distribution of land use. Based on the results of this study, it was found that the water quality of the Cikijing River was classified as good based on the content of heavy metals (Cr, Cu, Pb, and Zn) with a Pollution Index 0.272 (rainy season) and 0.196 (dry season), while for the sediment compartment of the Cikijing River, according to the geoaccumulation index (Igeo) were categorized as unpolluted for heavy metals in rainy and dry seasons Cr (-3.16 and -6.97) < Cu (-0.59 and -1.05), and Pb (-1.68 and -1.91), heavily to very heavily polluted for heavy metals Zn (4.7 and 4.1) . The pollution load index (PLI) shows that the Cikijing River is classified as polluted by several heavy metals with the largest pollution being Zn> Cu > Pb > Cr. Furthermore, the results of the analysis using the Potential Ecological Risk Index (PERI) concluded that the Cikijing River has a mild ecological risk potential in rainy season (93.94) and dry season (96.49). The correlation test results concluded that there was a strong and significant relationship between the concentrations of heavy metals Pb and Zn and total dissolved solids, salinity, and electrical conductivity in the water compartment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Rios , Indonésia , Chumbo/análise , Poluentes Químicos da Água/análise , Sedimentos Geológicos/análise , Qualidade da Água , Metais Pesados/análise , Medição de Risco , China
14.
Sci Rep ; 14(1): 6389, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493253

RESUMO

The present work aimed to predict the fate of two pesticides, copper (Cu) and glyphosate in a Mediterranean basin with an intermittent river and to assess the ecotoxicological risk related to their presence in water bodies coupling field measurements of streamflow and pesticide concentrations, and an eco-hydrological model. The Soil and Water Assessment Tool (SWAT) model was calibrated and, subsequently used to assess predicted environmental concentrations of pesticides in surface waters. The ecotoxicological risk related to the presence of Cu and glyphosate in surface water was assessed at the reach scale by using the Toxicity to Exposure Ratio approach (TER). Measurements of glyphosate concentrations (< 0.5 µg l-1) exceeded the maximum European threshold of environmental quality standards for pesticides (EQS) of 0.1 µg l-1. High concentrations of glyphosate were predicted in the wet season and in September, when glyphosate is mostly used in vineyards and olive grove productions. Acute risk (TER < 100) associated with the presence of glyphosate was detected for several reaches. High concentrations of Cu (< 6.5 µg l-1), mainly used as a fungicide in vineyards, were predicted in several river reaches. The results of the ecotoxicological risk assessment revealed that November and January were the critical months during which most of the river reaches showed a chronic risk associated with the presence of Cu.


Assuntos
Praguicidas , Poluentes Químicos da Água , Praguicidas/toxicidade , Praguicidas/análise , Rios , Solo , Água , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco
15.
Sci Rep ; 14(1): 7438, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548905

RESUMO

For rewilding the depleted crocodylian populations in India, a targeted 'one-species one area' based conservation approach was adopted in the early-1970s. Suitable habitats were identified and designated as protected areas, specifically targeted to recover a particular crocodylian species. A ~ 610 km stretch of Chambal River in the Ganga River Basin was declared as National Chambal Sanctuary to restore the 'Critically Endangered' gharial (Gavialis gangeticus), where active management of mugger (Crocodylus palustris) was discouraged. In the present study, we examined the population trends, occupancy, and genetic status of mugger by conducting population monitoring and genetic assessment to understand the status of potentially competitive mugger in the Sanctuary. Our finding suggests that the mugger population has notably increased and colonised the Sanctuary. We observed a moderate level of genetic diversity in the mugger, which was relatively higher compared to the gharial in the Sanctuary. The rapid colonization of ecological generalist mugger raises concerns about potential competition with ecological specialist gharial threatening its long-term sustainability. Considering the coexistence dynamics between the species, it is essential to extend adaptive management strategies for mugger to ensure successful recovery of gharial population in the Sanctuary.


Assuntos
Ecossistema , Rios , Índia
16.
Sci Total Environ ; 923: 171359, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438025

RESUMO

This study presents the first set of data on the removal of proton pump inhibitors (PPIs) and histamine H2 receptor antagonists (HRAs) and their transformation products in two Romanian wastewater treatment plants (WWTPs), as well as the impact of these organic pollutants on freshwater receiving effluents. The research investigated eight target pharmaceuticals and three metabolites using a newly developed and validated Liquid Chromatography - Mass Spectrometry (LC-MS/MS) method. The combined determination had a range of quantification limits varying from 0.13 ng/L to 0.18 ng/L for surface water and from 0.28 ng/L to 0.43 ng/L for wastewater. All analytes except cimetidine and 5-hydroxy-omeprazole were identified in water samples. The study found similar overall removal efficiencies for both WWTPs (43.2 % for Galati and 51.7 % for Ramnicu-Valcea). The research also showed that ranitidine and omeprazole could pose a low to high ecological risk to aquatic organisms. The findings suggest that the treatment stages used in the two Romanian WWTPs are insufficient to remove the target analytes completely, leading to environmental risks associated with the occurrence of pharmaceutical compounds in effluents and freshwater.


Assuntos
Monitoramento Ambiental , Preparações Farmacêuticas , Rios , Poluentes Químicos da Água , Cromatografia Líquida , Omeprazol , Preparações Farmacêuticas/análise , Medição de Risco , Rios/química , Romênia , Espectrometria de Massas em Tandem , Eliminação de Resíduos Líquidos , Água , Poluentes Químicos da Água/análise
17.
Environ Geochem Health ; 46(4): 124, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483643

RESUMO

This study analyzed the distribution and content of eight heavy metals (Cu, Pb, Zn, Ni, Cr, As, Cd, and Hg) in 221 surface soil samples from the upper reaches of the Xiaowen River. Environmental geochemical baselines were established for the eight heavy metals, and the pollution status was assessed on the basis of these baselines and the soil background value of Weifang City. The calculation results of Nemerow pollution index and the potential ecological hazard index (PEHI)-Ri showed that the overall pollution degree and ecological hazard in the study area were at a slight level. 49% (calculated by baseline value) and 24% (calculated by background value of Weifang City) samples were at moderate or above pollution level. 9% (calculated by baseline value) and 42% (calculated by background value) samples were at the level of moderate potential ecological hazards or above. According to the calculation results of Igeo and PEHI-Ei, the main pollutant in the study area was Hg, followed by Cd. 3% (calculated by baseline value) and 12% (calculated by background value) of Hg samples were at moderate or above contamination levels. 5% (calculated by baseline value) and 38% (calculated by background value) of Hg samples were at the level of strong potential ecological hazard or above. The western, central, and eastern parts of the study area were mainly the primary areas of pollution and ecological hazards. The non-carcinogenic risk was at an acceptable level, the carcinogenic risk was at a tolerable level, and the main risk pathway was oral intake, with Cr being the main contributor. Source apportionment indicated that soil heavy metals primarily originate from soil parent material, transportation, agricultural fertilization, and industrial emissions (waste gas, waste water and solid waste).


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo/química , Monitoramento Ambiental/métodos , Rios/química , Cádmio , Poluentes do Solo/análise , Metais Pesados/análise , Medição de Risco , China
18.
Environ Geochem Health ; 46(4): 130, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483703

RESUMO

River Mahi drains through semi-arid regions (Western India) and is a major Arabian Sea draining river. As the principal surface water source, its water quality is important to the regional population. Therefore, the river water was sampled extensively (n = 64, 16 locations, 4 seasons and 2 years) and analyzed for 11 trace elements (TEs; Sr, V, Cu, Ni, Zn, Cd, Ba, Cr, Mn, Fe, and Co). Machine learning (ML) and multivariate statistical analysis (MVSA) were applied to investigate their possible sources, spatial-temporal-annual variations, evaluate multiple water quality parameters [heavy metal pollution index (HPI), heavy metal evaluation index (HEI)], and health indices [hazard quotient (HQ), and hazard index (THI)] associated with TEs. TE levels were higher than their corresponding world average values in 100% (Sr, V and Zn), 78%(Cu), 41%(Ni), 27%(Cr), 9%(Cd), 8%(Ba), 8%(Co), 6%(Fe), and 0%(Mn), of the samples. Three principal components (PCs) accounted for 74.5% of the TE variance: PC-1 (Fe, Co, Mn and Cu) and PC-2 (Sr and Ba) are contributed from geogenic sources, while PC-3 (Cr, Ni and Zn) are derived from geogenic and anthropogenic sources. HPI, HEI, HQ and THI all indicate that water quality is good for domestic purposes and poses little hazard. ML identified Random forest as the most suitable model for predicting HEI class (accuracy: 92%, recall: 92% and precision: 94%). Even with a limited dataset, the study underscores the potential application of ML to predictive classification modeling.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Oligoelementos/análise , Rios , Cádmio/análise , Qualidade da Água , Metais Pesados/análise , Medição de Risco
19.
Environ Geochem Health ; 46(4): 144, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538830

RESUMO

Considering the extensive agricultural practices along the perennial rivers, viz. Periyar and Bharathappuzha of Kerala in the southwest coast of India, the first comprehensive surveillance of new and legacy organochlorine pesticides (OCPs) in surface sediment was conducted. Further, the sediment-water exchange fluxes have been elucidated. Mean concentrations of total HCH, DDT and endosulfan were 0.84 ng/g, 0.42 ng/g and 0.30 ng/g for Bharathappuzha Riverine sediment (BRS) and 1.08 ng/g, 0.39 ng/g and 0.35 ng/g for Periyar Riverine sediment (PRS). The dominance α-HCH and ß-HCH isomers in PRS and BRS reflect the ongoing use of technical HCH in Kerala. The calculated KSW in both rivers was very low in comparison with other Indian rivers. The average log K'OC for all the detected OCPs in both the rivers was lower than the predicted log KOC in equilibrium indicating the higher adherence of OCPs to sediment. Furthermore, fugacity fraction (fs/fw) was < 1.0 for all OCPs confirming the net deposition of OCPs into the sediment. Sediment concentrations for each of the OCPs in PRS and BRS did not surpass the threshold effect level and probable effect level as stipulated by the Canadian Council of Ministry of the Environment Guidelines. In addition, all the sites of both rivers had sediment quality guideline quotient (SQGQ) values below 0.1 indicating the absence of significant biological and ecological risks.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , Praguicidas/análise , Poluentes Orgânicos Persistentes , Água , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Canadá , Hidrocarbonetos Clorados/análise , Medição de Risco , Rios , China
20.
Environ Monit Assess ; 196(4): 388, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512542

RESUMO

The deterioration of superficial water quality is a significant concern in water management. Currently, most European rivers do not achieve qualitative standards defined by Directive 2000/60/EC (Water Framework Directive, WFD), while the health status of many surface water bodies remains unknown. Within this context, we propose a new methodology to perform a semi-quantitative analysis of the pressure state of a river, starting from easily accessible data related to anthropic activities. The proposed approach aims to address the endemic scarcity of monitoring records. This study proposes a procedure to (i) evaluate the relative pressure of different human activities, (ii) identify allocation points of different pollutant sources along the river using a raster-based approach, and (iii) determine a spatial biochemical water quality index. The developed index expresses the overall biochemical state of surface water induced by pollutant sources that may simultaneously impact a single river segment. This includes establishments under the so-called Seveso Directive, activities subjected to the IPPC-IED discipline, wastewater treatment plants, and contaminated sites. The methodology has been tested over three rivers in Northern Italy, each exposed to different industrial and anthropogenic pressures: Reno, Enza, and Parma. A comparison with monitored data yielded convincing results, proving the consistency of the proposed index in reproducing the spatial variability of the river water quality. While additional investigations are necessary, the developed methodology can serve as a valuable tool to support decision-making processes and predictive studies in areas lacking or having limited water quality monitoring data.


Assuntos
Rios , Poluentes Químicos da Água , Humanos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Qualidade da Água , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA